Benchmarking FastAPI vs. Axum

I wanted to run a simple benchmark of two common stacks as a way to get a sense of baselines between Python and Rust for a backend web server. For Python, a common choice is FastAPI and SQLAlchemy. For Rust, a common choice is Axum and SQLx. How do they compare?

At least two similar comparisons have been made.

I wanted to do things slightly differently.

Coleman’s approach uses only a single CPU with limits the benefits of concurrency. It also doesn’t interact with a database.

Prokopiou’s approach is much more “real”. In fact, a little too “real” as to make the codebase a bit harder to quickly grok.

I wanted something between these two: (1) still include a database in the hot path and (2) make the codebase as simple as possible.

The benchmark

Each web server implements a single endpoint that runs

SELECT * FROM "users" ORDER BY user_id LIMIT 100

from a local, Dockerized Postgres database seeded with 2000 users and returns the result as JSON. I chose this query somewhat arbitrarily. It’s not particularly interesting if the database query time dominates the time so much that the comparison is not useful (e.g., say we seeded 10k users and returned the entire list every time). But, it’s also not particularly interesting if there is no database interacting, since that’s what your basic CRUD backends always do some of.

Both use a connection pool of up to 5 connections, and both are based extremely closely on tutorial/example code from FastAPI and Axum.

Along the way, I got to try a handful of new HTTP benchmarking tools from this awesome list, and came across oha (also used by Prokopiou), and really enjoyed it.

That, along with btm, makes for very fun-to-watch interactive benchmarking.

Terminal Screenshot

Interactive benchmarking in the terminal can be beautiful.

Results


⚠️ NOTE: The benchmarks have been updated with an asynchronous version of FastAPI and run on newer hardware. Please see the repository for updated results! ⚠️


On my personal PC with 16 GB of RAM and a Ryzen 7 3700X (8-core, 16-thread), I saw the following.

MetricFastAPIAxumChange (%)
Throughput (rps)3059740+3090
50% latency (ms)301.0-97
99% latency (ms)741.4-98
Peak Memory Usage (MiB)8310-88

Dramatic improvements using Rust all around.

In particular, I was shocked at how large the latencies were for FastAPI, especially because this was running locally with no network latency.

Try it yourself

Please, go play with the code yourself!

In particular, please tell me if you think I’m doing something wrong or too unfair—benchmarks are hard! For example, I’m sure I have a coordinated omission problem on my hands, but I’m not quite sure what the most fair way to address it is.

https://github.com/lukehsiao/axum-fastapi

Posts from blogs I follow

Last Updated Columns With Postgres

In many applications it’s a requirement to keep track of when a record was created and updated the last time. Often, this is implemented by having columns such as created_at and updated_at within each table. To make things as simple as possible for applica…

via morling.dev -- Blog February 20, 2024

TinyPilot: Month 43

New here? Hi, I’m Michael. I’m a software developer and the founder of TinyPilot, an independent computer hardware company. I started the company in 2020, and it now earns $80-100k/month in revenue and employs six other people. Every month, I publish a ret…

via mtlynch.io February 20, 2024

Retirement Accounts and Short Timelines

Sometimes I talk to people who don't use retirement accounts because they think the world will change enormously between now and when they're older. Something like, the most likely outcomes are that things go super well and they won't need the money, or t…

via Jeff Kaufman's Writing February 19, 2024

Generated by openring-rs